Computer Appreciation

 

1.3 Generation of computers

Five Generations of Modern Computers

First Generation (1945-1956)

With the onset of the Second World War, governments sought to develop computers to exploit their potential strate.g.ic importance. This increased funding for computer development projects hastened technical progress. By 1941 German engineer Konrad Zuse had developed a computer, the Z3, to design airplanes and missiles. The Allied forces, however, made greater strides in developing powerful computers. In 1943, the British completed a secret code-breaking computer called Colossus to decode German messages. The Colossus's impact on the development of the computer industry was rather limited for two important reasons. First, Colossus was not a general-purpose computer; it was only designed to decode secret messages. Second, the existence of the machine was kept secret until decades after the war.

American efforts produced a broader achievement. Howard H. Aiken (1900-1973), a Harvard engineer working with IBM, succeeded in producing an all-electronic calculator by 1944. The purpose of the computer was to create ballistic charts for the U.S. Navy. It was about half as long as a football field and contained about 500 miles of wiring. The Harvard-IBM Automatic Sequence Controlled Calculator, or Mark I for short, was a electronic relay computer. It used electromagnetic signals to move mechanical parts. The machine was slow (taking 3-5 seconds per calculation) and inflexible (in that sequences of calculations could not change); but it could perform basic arithmetic as well as more complex equations.

Another computer development spurred by the war was the Electronic Numerical Inte.g.rator and Computer (ENIAC), produced by a partnership between the U.S. government and the University of Pennsylvania. Consisting of 18,000 vacuum tubes, 70,000 resistors and 5 million soldered joints, the computer was such a massive piece of machinery that it consumed 160 kilowatts of electrical power, enough energy to dim the lights in an entire section of Philadelphia. Developed by John Presper Eckert (1919-1995) and John W. Mauchly (1907-1980), ENIAC, unlike the Colossus and Mark I, was a general-purpose computer that computed at speeds 1,000 times faster than Mark I.

Look what you can get

Look

what you can get

In the mid-1940's John von Neumann (1903-1957) joined the University of Pennsylvania team, initiating concepts in computer design that remained central to computer engineering for the next 40 years. Von Neumann designed the Electronic Discrete Variable Automatic Computer (EDVAC) in 1945 with a memory to hold both a stored program as well as data. This "stored memory" technique as well as the "conditional control transfer," that allowed the computer to be stopped at any point and then resumed, allowed for greater versatility in computer programming. The key element to the von Neumann architecture was the central processing unit, which allowed all computer functions to be coordinated through a single source. In 1951, the UNIVAC I (Universal Automatic Computer), built by Remington Rand, became one of the first commercially available computers to take advantage of these advances. Both the U.S. Census Bureau and General Electric owned UNIVACs. One of UNIVAC's impressive early achievements was predicting the winner of the 1952 presidential election, Dwight D. Eisenhower.

First generation computers were characterized by the fact that operating instructions were made-to-order for the specific task for which the computer was to be used. Each computer had a different binary-coded program called a machine language that told it how to operate. This made the computer difficult to program and limited its versatility and speed. Other distinctive features of first generation computers were the use of vacuum tubes (responsible for their breathtaking size) and magnetic drums for data storage.